Действия с матрицами. Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц Что такое сумма коэффициентов матрицы

Действия с матрицами. Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц Что такое сумма коэффициентов матрицы

Это понятие, которое обобщает все возможные операции, производимые с матрицами. Математическая матрица - таблица элементов. О такой таблице, где m строк и n столбцов, говорят, что это матрица имеет размерность m на n .

Общий вид матрицы:

Для решения матриц необходимо понимать, что такое матрица и знать основные ее параметры. Основные элементы матрицы:

  • Главная диагональ, состоящая из элементов а 11 ,а 22 …..а mn .
  • Побочная диагональ, состоящая из элементов а 1n ,а 2n-1 …..а m1 .

Основные виды матриц:

  • Квадратная - такая матрица, где число строк = числу столбцов (m=n ).
  • Нулевая - где все элементы матрицы = 0.
  • Транспонированная матрица — матрица В , которая была получена из исходной матрицы A путем замены строк на столбцы.
  • Единичная - все элементы главной диагонали = 1, все остальные = 0.
  • Обратная матрица — матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.

Матрица может быть симметричной относительно главной и побочной диагонали. Т.е., если а 12 =а 21 , а 13 =а 31 ,….а 23 =а 32 …. а m-1n =а mn-1 , то матрица симметрична относительно главной диагонали. Симметричными могут быть лишь квадратные матрицы.

Методы решения матриц.

Почти все методы решения матрицы заключаются в нахождении ее определителя n -го порядка и большинство из них довольно громоздки. Чтобы найти определитель 2го и 3го порядка есть другие, более рациональные способы.

Нахождение определителей 2-го порядка.

Для вычисления определителя матрицы А 2го порядка, необходимо из произведения элементов главной диагонали вычесть произведение элементов побочной диагонали:

Методы нахождения определителей 3го порядка.

Ниже приведены правила для нахождения определителя 3го порядка.

Упрощенно правило треугольника, как одного из методов решения матриц , можно изобразить таким образом:

Другими словами, произведение элементов в первом определителе, которые соединены прямыми, берется со знаком "+"; так же, для 2го определителя - соответствующие произведения берутся со знаком "-", то есть по такой схеме:

При решении матриц правилом Саррюса , справа от определителя дописывают первые 2 столбца и произведения соответствующих элементов на главной диагонали и на диагоналях, которые ей параллельны, берут со знаком "+"; а произведения соответствующих элементов побочной диагонали и диагоналей, которые ей параллельны, со знаком "-":

Разложение определителя по строке или столбцу при решении матриц.

Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку либо столбец, по которой/ому ведется разложение, будут обозначать стрелкой.

Приведение определителя к треугольному виду при решении матриц.

При решении матриц методом приведения определителя к треугольному виду, работают так: с помощью простейших преобразований над строками либо столбцами, определитель становится треугольного вида и тогда его значение, в соответствии со свойствами определителя, будет равно произведению элементов, которые стоят на главной диагонали.

Теорема Лапласа при решении матриц.

Решая матрицы по теореме Лапласа, необходимо знать непосредственно саму теорему. Теорема Лапласа: Пусть Δ - это определитель n -го порядка. Выбираем в нем любые k строк (либо столбцов), при условии k n - 1 . В таком случае сумма произведений всех миноров k -го порядка, содержащихся в выбранных k строках (столбцах), на их алгебраические дополнения будет равна определителю.

Решение обратной матрицы.

Последовательность действий для решения обратной матрицы :

  1. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  2. Вычисляем алгебраические дополнения.
  3. Составляем союзную (взаимную, присоединённую) матрицу C .
  4. Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
  5. Проверяем выполненную работу: умножаем матрицу начальную и полученную матрицы, результатом должна стать единичная матрица.

Решение систем матриц.

Для решения систем матриц наиболее часто используют метод Гаусса.

Метод Гаусса — это стандартный способ решения систем линейных алгебраических уравнений (СЛАУ) и он заключается в том, что последовательно исключаются переменные, т.е., при помощи элементарных изменений систему уравнений доводят до эквивалентной системы треугольного вида и из нее, последовательно, начиная с последних (по номеру), находят каждый элемент системы.

Метод Гаусса является самым универсальным и лучшим инструментом для нахождения решения матриц. Если у системы бесконечное множество решений или система является несовместимой, то ее нельзя решать по правилу Крамера и матричным методом.

Метод Гаусса подразумевает также прямой (приведение расширенной матрицы к ступенчатому виду, т.е. получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и есть метод Гаусса, обратный - метод Гаусса-Жордана. Метод Гаусса-Жордана отличается от метода Гаусса лишь последовательностью исключения переменных.

Определение 1. Матрицей А размера m n называется прямоугольная таблица из m строк и n столбцов, состоящая из чисел или иных математических выражений (называемых элементами матрицы),i = 1,2,3,…,m, j = 1,2,3,…,n.

, или

Определение 2. Две матрицы
и
одного размера называютсяравными , если они совпадают поэлементно, т.е. =,i = 1,2,3,…,m, j = 1,2,3,…,n.

С помощью матриц легко записывать некоторые экономические зависимости, например таблицы распределения ресурсов по некоторым отраслям экономики.

Определение 3. Если число строк матрицы совпадает с числом ее столбцов, т.е. m = n, то матрица называется квадратной порядка n , а в противном случае прямоугольной.

Определение 4. Переход от матрицы А к матрице А т, в которой строки и столбцы поменялись местами с сохранением порядка, называется транспонированием матрицы.

Виды матриц: квадратная (размера 33) -
,

прямоугольная (размера 25) -
,

диагональная -
, единичная -
, нулевая -
,

матрица-строка -
, матрица-столбец -.

Определение 5. Элементы квадратной матрицы порядка n с одинаковыми индексами называются элементами главной диагонали, т.е. это элементы:
.

Определение 6. Элементы квадратной матрицы порядка n называются элементами побочной диагонали, если сумма их индексов равна n + 1, т.е. это элементы: .

1.2. Операции над матрицами.

1 0 . Суммой двух матриц
и
одинакового размера называется матрица С = (с ij), элементы которой определяются равенством с ij = a ij + b ij , (i = 1,2,3,…,m, j = 1,2,3,…,n).

Свойства операции сложения матриц.

Для любых матриц А,В,С одного размера выполняются равенства:

1) А + В = В + А (коммутативность),

2) (А + В) + С = А + (В + С) = А + В + С (ассоциативность).

2 0 . Произведением матрицы
на число называется матрица
того же размера, что и матрица А, причемb ij = (i = 1,2,3,…,m, j = 1,2,3,…,n).

Свойства операции умножения матрицы на число.

    (А) = ()А (ассоциативность умножения);

    (А+В) = А+В (дистрибутивность умножения относительно сложения матриц);

    (+)А = А+А (дистрибутивность умножения относительно сложения чисел).

Определение 7. Линейной комбинацией матриц
и
одинакового размера называется выражение видаА+В, где  и  - произвольные числа.

3 0 . Произведением А В матриц А и В соответственно размеров mn и nk называется матрица С размера mk, такая, что элемент с ij равен сумме произведений элементов i-той строки матрицы А и j-того столбца матрицы В, т.е. с ij = a i 1 b 1 j +a i 2 b 2 j +…+a ik b kj .

Произведение АВ существует, только в том случае, если число столбцов матрицы А совпадает с числом строк матрицы В.

Свойства операции умножения матриц:

    (АВ)С = А(ВС) (ассоциативность);

    (А+В)С = АС+ВС (дистрибутивность относительно сложения матриц);

    А(В+С) = АВ+АС (дистрибутивность относительно сложения матриц);

    АВ  ВА (не коммутативность).

Определение 8. Матрицы А и В, для которых АВ = ВА, называются коммутирующими или перестановочными.

Умножение квадратной матрицы любого порядка на соответствующую единичную матрицу не меняет матрицу.

Определение 9. Элементарными преобразованиями матриц называются следующие операции:

    Перемена местами двух строк (столбцов).

    Умножение каждого элемента строки (столбца) на число, отличное от нуля.

    Прибавление к элементам одной строки (столбца) соответствующих элементов другой строки (столбца).

Определение 10. Матрица В, полученная из матрицы А с помощью элементарных преобразований называется эквивалентной (обозначается ВА).

Пример 1.1. Найти линейную комбинацию матриц 2А–3В, если

,
.

,
,


.

Пример 1.2. Найти произведение матриц
, если

.

Решение: т.к количество столбцов первой матрицы совпадает с количеством строк второй матрицы, то произведение матриц существует. В результате получаем новую матрицу
, где

В результате получим
.

Лекция 2. Определители. Вычисление определителей второго, третьего порядка. Свойства определителей n -го порядка.

Сегодня это действительно слишком просто: вы можете подойти к компьютеру и практически без знания того, что вы делаете, создавать разумное и бессмыслицу с поистине изумительной быстротой. (Дж. Бокс)

Основные сведения о матрицах

В этом разделе мы даем основные сведения о матрицах, необходимые для понимания статистики и анализа данных.

Матрицей размера m x n (читается m на n ) называется прямоугольная таблица чисел, содержащая m строк и n столбцов.

Числа, составляющие матрицу, называются элементами матрицы.

Матрицы обозначаются прописными (заглавными) буквами латинского алфавита, например, A , B , C ,….

Для обозначения элементов матрицы используются строчные буквы с двойным индексом, например: a ij , где i - номер строки, j - номер столбца.

Например, матрица:

В сокращенной записи обозначаем A =(a ij ) ; i =1,2,…m ; j =1,2,…,n

Приведем пример матрицы 2 на 2:

Вы видите, что a 11 = 1, a 12 = 0, a 21 = 2, a 22 =5

Наряду с круглыми скобками используются и другие обозначения матрицы:

Две матрицы A и B одного размера называются равными , если они совпадают поэлементно, a ij = b ij для любых i =1,2,…m ; j =1,2,…n

Виды матриц

Матрица, состоящая из одной строки, называется матрицей (вектором) - строкой, а из одного столбца - матрицей (вектором)- столбцом:

A=(a 11 ,a 12 ,…,a 1n) - матрица - строка

Матрица называется квадратной n -го порядка, если число ее строк равно числу столбцов и равно n .

Например,

Элементы матрицы a ij , у которых номер столбца равен номеру строки образуют главную диагональ матрицы. Для квадратной матрицы главную диагональ образуют элементы a 11 , a 22 ,…,a nn .

Если все недиагональные элементы квадратной матрицы равны нулю, то матрица называется диагональной .

Операции над матрицами

Над матрицами, как и над числами, можно производить ряд операций, причем некоторые из них аналогичны операциями над числами, а некоторые - специфические.

1. Умножение матрицы на число. Произведение матрицы А на число называется матрица B=A, элементы которой b ij =a ij для i=1,2,…m; j=1,2,…n

Следствие: Общий множитель всех элементов матрицы можно выносить за знак матрицы.

В частности, произведение матрицы А на число 0 есть нулевая матрица.

2. Сложение матриц. Суммой двух матриц А и В одинакового размера m называется матрица С=А+В, элементы которой c ij =a ij +b ij для i=1,2,…m; j=1,2,…n (т.е. матрицы складываются поэлементно).

3. Вычитание матриц. Разность двух матриц одинакового размера определяется через предыдущие операции: A -B =A +(-1)∙B .

4. Умножение матриц. Умножение матрицы А на матрицу В определено, когда число столбцов первой матрицы равно числу строк второй. Тогда произведением матриц A m ∙B k называется такая матрица C m , каждый элемент которой cij равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-го столбца матрицы В:

i =1,2,…,m; j=1,2,…,n

Многие свойства, присущие операциям над числами, справедливы и для операций над матрицами (что следует из этих операций):

A+B=B+A

(A+B)+C=A+(B+C)

λ (A+B)= λA + λB

A( B+C)=AB+AC

(A+B)C=AC+BC

λ (AB)=(λA )B=A(λB )

A( BC)=(AB)C

Однако имеются и специфические свойства матриц. Так, операция умножения матриц имеет некоторые отличия от умножения чисел:

a) Если АВ существует, то после перестановки сомножителей местами произведение матриц ВА может и не существовать.

Линейная алгебра

Матрицы

Матрица размера m х n – это прямоугольная таблица чисел, содержащая m строк и n столбцов. Числа, составляющие матрицу, называются элементами матрицы.

Матрицы принято обозначать заглавными латинскими буквами, а элементы – теми же, но строчными буквами с двойной индексацией.

Например, рассмотрим матрицу А размерности 2 х 3:

В этой матрице две строки (m = 2) и три столбца (n = 3), т.е. она состоит из шести элементов a ij , где i - номер строки, j - номер столбца. При этом принимает значения от 1 до 2, а от одного до трех (записывается ). А именно, a 11 = 3; a 12 = 0; a 13 = -1; a 21 = 0; a 22 = 1,5; a 23 = 5.

Матрицы А и В одного размера (m х n) называют равными , если они поэлементно совпадают, т.е. a ij = b ij для , т.е. для любых i и j (можно записать "i, j).

Матрица-строка – это матрица, состоящая из одной строки, а матрица-столбец – это матрица, состоящая из одного столбца.

Например, - матрица-строка, а .

Квадратная матрица n-го порядка – это матрица, в число строк равно числу столбцов и равно n.

Например, - квадратная матрица второго порядка.

Диагональные элементы матрицы – это элементы, у которых номер строки равен номеру столбца (a ij , i = j). Эти элементы образуют главную диагональ матрицы. В предыдущем примере главную диагональ образуют элементы a 11 = 3 и a 22 = 5.

Диагональная матрица – это квадратная матрица, в которой все недиагональные элементы равны нулю. Например, - диагональная матрица третьего порядка. Если при этом все диагональные элементы равны единице, то матрица называется единичной (обычно обозначаются буквой Е). Например, - единичная матрица третьего порядка.

Матрица называется нулевой , если все ее элементы равны нулю.

Квадратная матрица называется треугольной , если все ее элементы ниже (или выше) главной диагонали равны нулю. Например, - треугольная матрица третьего порядка.

Операции над матрицами

Над матрицами можно производить следующие операции:

1. Умножение матрицы на число . Произведением матрицы А на число l называется матрица В = lА, элементы которой b ij = la ij для любых i и j.

Например, если , то .

2. Сложение матриц . Суммой двух матриц А и В одинакового размера m х n называется матрица С = А + В, элементы которой с ij = a ij + b ij для "i, j.

Например, если то

.

Отметим, что через предыдущие операции можно определить вычитание матриц одинакового размера: разность А-В = А + (-1)*В.

3. Умножение матриц . Произведением матрицы А размера m x n на матрицу В размера n x p называется такая матрица С, каждый элемент которой с ij равен сумме произведений элементов i-й строки матрицы А на соответствующие элементы j-го столбца матрицы В, т.е. .


Например, если

, то размер матрицы-произведения будет 2 x 3, и она будет иметь вид:

В этом случае матрица А называется согласованной с матрицей В.

На основе операции умножения для квадратных матриц определена операция возведения в степень . Целой положительной степенью А m (m > 1) квадратной матрицы А называются произведение m матриц, равных А, т.е.

Подчеркнем, что сложение (вычитание) и умножение матриц определены не для любых двух матриц, а только для удовлетворяющим определенным требованиям к своей размерности. Для нахождения суммы или разности матриц их размер обязательно должен быть одинаковым. Для нахождения произведения матриц число столбцов первой из них должно совпадать с числом строк второй (такие матрицы называют согласованными ).

Рассмотрим некоторые свойства рассмотренных операций, аналогичные свойствам операций над числами.

1) Коммутативный (переместительный) закон сложения:

А + В = В + А

2) Ассоциативный (сочетательный) закон сложения:

(А + В) + С = А + (В + С)

3) Дистрибутивный (распределительный) закон умножения относительно сложения:

l(А + В) = lА + lВ

А (В + С) = АВ + АС

(А + В) С = АС + ВС

5) Ассоциативный (сочетательный) закон умножения:

l(АВ) = (lА)В = А(lВ)

A(BС) = (АВ)С

Подчеркнем, что переместительный закон умножения для матриц в общем случае НЕ выполняется, т.е. AB ¹ BA. Более того, из существования AB не обязательно следует существование ВА (матрицы могут быть не согласованными, и тогда их произведение вообще не определено, как в приведенном примере умножения матриц). Но даже если оба произведения существуют, они обычно разные.

В частном случае коммутативным законом обладает произведение любой квадратной матрицы А на единичную матрицу того же порядка, причем это произведение равно А (умножение на единичную матрицу здесь аналогично умножению на единицу при умножении чисел):

АЕ = ЕА = А

В самом деле,

Подчеркнем еще одно отличие умножения матриц от умножения чисел. Произведение чисел может равняться нулю тогда и только тогда, когда хотя бы одно из них равно нулю. О матрицах этого сказать нельзя, т.е. произведение ненулевых матриц может равняться нулевой матрице. Например,

Продолжим рассмотрение операций над матрицами.

4. Транспонирование матрицы представляет собой операцию перехода от матрицы А размера m x n к матрице А Т размера n x m, в которой строки и столбцы поменялись местами:

%.

Свойства операции транспонирования:

1) Из определения следует, что если матрицу транспонировать дважды, мы вернемся к исходной матрице: (A T) T = A.

2) Постоянный множитель можно вынести за знак транспонирования: (lА) T = lА T .

3) Транспонирование дистрибутивно относительно умножения и сложения матриц: (AB) T = B T A T и (A + B) T = B T + A T .

Определители матриц

Для каждой квадратной матрицы А вводится число |А|, которое называют ее определителем . Иногда его еще обозначают буквой D.

Это понятие является важным для решения ряда практических задач. Определим его через способ вычисления.

Для матрицы А первого порядка ее определителем называют ее единственный элемент |А| = D 1 = а 11 .

Для матрицы А второго порядка ее определителем называют число, которое вычисляют по формуле |А| = D 2 = а 11 * а 22 – а 21 * а 12

Для матрицы А третьего порядка ее определителем называют число, которое вычисляют по формуле

Оно представляет алгебраическую сумму, состоящую из 6 слагаемых, в каждое из которых входит ровно по одному элементу из каждой строки и каждого столбца матрицы. Для запоминания формулы определителя принято пользоваться так называемым правилом треугольников или правилом Сарруса (рисунок 6.1).

На рисунке 6.1 схема слева показывает, каким образом выбирать элементы для слагаемых со знаком «плюс», - они находятся на главной диагонали и в вершинах равнобедренных треугольников, основания которых ей параллельны. Схема слева используется для слагаемых со знаком «минус»; на ней вместо главной диагонали берется так называемая побочная.

Определители более высоких порядков вычисляют рекуррентным способом, т.е. определитель четвертого порядка через определитель третьего порядка, определитель пятого порядка через определитель четвертого порядка и т.д. Для описания этого способа необходимо ввести понятия минора и алгебраического дополнения элемента матрицы (сразу же отметим, что сам способ, который будет рассмотрен далее, подходит и для определителей третьего и второго порядка).

Минором М ij элемента а ij матрицы n-го порядка называют определитель матрицы (n-1)-го порядка, полученной из матрицы А вычеркиванием i-й строки и j-го столбца.

Каждая матрица n-го порядка имеет n 2 миноров (n-1)-го порядка.

Алгебраическим дополнением A ij элемента а ij матрицы n-го порядка называют его минор, взятый со знаком (-1) (i+ j) :

A ij = (-1) (i+ j) *М ij

Из определения следует, что A ij = М ij , если сумма номеров строки и столбца четная, и A ij = -М ij , если она нечетная.

Например, если , то ; и т.д.

Способ вычисления определителя состоит в следующем: определитель квадратной матрицы равен сумме произведений элементов любой строки (столбца) на их алгебраические дополнения:

(разложение по элементам i-й строки; );

(разложение по элементам j-го столбца; ).

Например,

Отметим, что и в общем случае определитель треугольной матрицы равен произведению элементов главной диагонали.

Сформулируем основные свойства определителей.

1. Если какая-либо строка или столбец матрицы состоит из одних нулей, то определитель равен 0 (следует из способа расчета).

2. Если все элементы какой-либо строки (столбца) матрицы умножить на одно и то же число, то и ее определитель умножится на это число (также следует из способа расчета – на расчет алгебраических дополнений общий множитель не влияет, а все остальные слагаемые умножены именно на это число).

Замечание: за знак определителя можно выносить общий множитель именно строки или столбца (в отличие от матрицы, за знак которой можно выносить общий множитель всех ее элементов). Например, , но .

3. При транспонировании матрицы ее определитель не изменяется: |А Т | = |А| (доказательство проводить не будем).

4. При перестановке местами двух строк (столбцов) матрицы ее определитель меняет знак на противоположный.

Для доказательства этого свойства вначале предположим, что переставлены две соседние строки матрицы: i-я и (i+1)-я. Для расчета определителя исходной матрицы осуществим разложение по i-й строке, а для определителя новой матрицы (с переставленными строками) – по (i+1)–й (которая в ней такая же, т.е. поэлементно совпадает). Тогда при расчете второго определителя каждое алгебраическое дополнение будет иметь противоположный знак, так как (-1) будет возводиться не в степень (i + j), а в степень (i + 1+ j), а в остальном формулы отличаться не будут. Таким образом, знак определителя изменится на противоположный.

Теперь предположим, что переставлены не соседние, а две произвольные строки, например, i-я и (i+t)-я. Такую перестановку можно представить как последовательное смещение i-й строки на t строк вниз, а (i+t)-й строки - на (t-1) строк вверх. При этом знак определителя поменяется (t + t – 1) = 2t – 1 число раз, т.е. нечетное число раз. Следовательно, в конечном итоге он поменяется на противоположный.

Аналогичные рассуждения можно поменять для столбцов.

5. Если матрица содержит две одинаковые строки (столбца), то ее определитель равен 0.

В самом деле, если одинаковые строки (столбцы) переставить местами, то будет получена та же самая матрица с тем же самым определителей. С другой стороны, по предыдущему свойству он должен поменять знак, т.е. D = -D Û D = 0.

6. Если элементы двух строк (столбцов) матрицы пропорциональны, то определитель равен 0.

Это свойство основано на предыдущем свойстве и выносе за скобку общего множителя (после выноса за скобку коэффициента пропорциональности в матрице будут одинаковые строки или столбцы, и в результате этот коэффициент будет умножаться на ноль).

7. Сумма произведений элементов любой строки (столбца) матрицы на алгебраические дополнения элементов другой строки (столбца) той же матрицы всегда равна 0: при i ¹ j.

Чтобы доказать это свойство, достаточно заменить в матрице А j–ю строку на i–ю. В полученной матрице будет две одинаковые строки, поэтому ее определитель равен 0. С другой стороны, его можно вычислить разложением по элементам j -й строки: .

8. Определитель матрицы не изменяется, если к элементам строки или столбца матрицы прибавить элементы другой строки (столбца), умноженные на одно и тоже число.

В самом деле, пусть к элементам i–й строки прибавляют элементы j-й строки, умноженные на l. Тогда элементы новой i–й строки примут вид
(a ik + la jk , "k). Вычислим определитель новой матрицы разложением по элементам i-й строке (отметим, что алгебраические дополнения ее элементов при этом не изменятся):

Мы получили, что этот определитель не отличается от определителя исходной матрицы.

9. Определитель произведения матриц равен произведению их определителей: |АВ| = |А| * |В| (доказательство проводить не будем).

Рассмотренные выше свойства определителей используют для упрощения их вычисления. Обычно стараются преобразовать матрицу к такому виду, чтобы какой-либо столбец или строка содержали как можно больше нулей. После этого определитель легко найти разложением по этой строке или столбцу.

Обратная матрица

Матрицу А -1 называют обратной по отношению к квадратной матрице А, если при умножении этой матрицы на матрицу А как справа, так и слева получается единичная матрица: А -1 * А = А * А -1 = Е.

Из определения следует, что обратная матрица является квадратной матрицей того же порядка, что и матрица А.

Можно отметить, что понятие обратной матрицы аналогично понятию обратного числа (это число, которое при умножении на данное число дает единицу: а*а -1 = а*(1/а) = 1).

Все числа, кроме нуля, имеют обратные числа.

Чтобы решить вопрос о том, имеет ли квадратная матрица обратную, необходимо найти ее определитель. Если определитель матрицы равен нулю, то такая матрица называется вырожденной , или особенной .

Необходимое и достаточное условие существования обратной матрицы: обратная матрица существует и единственна тогда и только тогда, когда исходная матрица невырожденная.

Докажем необходимость. Пусть матрица А имеет обратную матрицу А -1 , т.е. А -1 * А = Е. Тогда |А -1 * А| = |А -1 | * |А| = |Е| = 1. Следовательно,
|А| ¹ 0.

Докажем достаточность. Чтобы его доказать, необходимо просто описать способ вычисления обратной матрицы, который мы всегда сможем применить для невырожденной матрицы.

Итак, пусть |А| ¹ 0. Транспонируем матрицу А. Для каждого элемента А Т найдем алгебраическое дополнение и составим из них матрицу , которую называют присоединенной (взаимной, союзной): .

Найдем произведение присоединенной матрицы и исходной . Получим . Таким образом матрица В – диагональная. На ее главной диагонали стоят определители исходной матрицы, а все остальные элементы – нули:

Аналогично можно показать, что .

Если разделить все элементы матрицы на |А|, то будет получена единичная матрица Е.

Таким образом , т.е. .

Докажем единственность обратной матрицы. Предположим, что существует другая обратная матрица для А, отличная от А -1 . Обозначим ее X. Тогда А * Х = Е. Умножим слева обе части равенства на А -1 .

А -1 * А * Х = А -1 * Е

Единственность доказана.

Итак, алгоритм вычисления обратной матрицы состоит из следующих шагов:

1. Найти определитель матрицы |А| . Если |А| = 0, то матрица А - вырожденная, и обратную матрицу найти нельзя. Если |А| ¹ 0, то переходят к следующему шагу.

2. Построить транспонированную матрицу А Т.

3. Найти алгебраические дополнения элементов транспонированной матрицы и построить присоединенную матрицу .

4. Вычислить обратную матрицу, разделив присоединенную матрицу на |А|.

5. Можно проверить правильность вычисления обратной матрицы в соответствии с определением: А -1 * А = А * А -1 = Е.

1. Найдем определитель этой матрицы по правилу треугольников:

Проверку опустим.

Можно доказать следующие свойства обращения матриц:

1) |А -1 | = 1/|А|

2) (А -1) -1 = А

3) (А m) -1 = (А -1) m

4) (АB) -1 = B -1 * А -1

5) (А -1) T = (А T) -1

Ранг матрицы

Минором k-го порядка матрицы А размера m х n называют определитель квадратной матрицы k-го порядка, которая получена из матрицы А вычеркиванием каких-либо строк и столбцов.

Из определения следует, что порядок минора не превосходит меньшего из ее размеров, т.е. k £ min {m; n}. Например, из матрицы А 5х3 можно получить квадратные подматрицы первого, второго и третьего порядков (соответственно, рассчитать миноры этих порядков).

Рангом матрицы называют наивысший порядок отличных от нуля миноров этой матрицы (обозначают rang А, или r(А)).

Из определения следует, что

1) ранг матрицы не превосходит меньшего из ее размеров, т.е.
r(А) £ min {m; n};

2) r(А) = 0 тогда и только тогда, когда матрица нулевая (все элементы матрицы равны нулю), т.е. r(А) = 0 Û А = 0;

3) для квадратной матрицы n-го порядка r(А) = n тогда и только тогда, когда эта матрица А невырожденная, т.е. r(А) = n Û |А| ¹ 0.

На самом деле, для этого достаточно вычислить только один такой минор (тот, который получен вычеркиванием третьего столбца (потому что в остальных будет присутствовать нулевой третий столбец, и поэтому они равны нулю).

По правилу треугольника = 1*2*(-3) + 3*1*2 + 3*(-1)*4 – 4*2*2 – 1*(-1)*1 – 3*3*(-3) = -6 +6 – 12 – 16 + 1 +27 = 0.

Поскольку все миноры третьего порядка нулевые, r(А) £ 2. Так как существует ненулевой минор второго порядка, например,

Очевидно, что использованные нами приемы (рассмотрение всевозможных миноров) не подходят для определения ранга в более сложных случаях ввиду большой трудоемкости. Обычно для нахождения ранга матрицы используют некоторые преобразования, которые называют элементарными :

1). Отбрасывание нулевых строк (столбцов).

2). Умножение всех элементов строки или столбца матрицы на число, отличное от нуля.

3). Изменение порядка строк (столбцов) матрицы.

4). Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.

5). Транспонирование.

Если матрица А получена из матрицы B элементарными преобразованиями, то эти матрицы называют эквивалентными и обозначают А ~ В.

Теорема . Элементарные преобразования матрицы не изменяют ее ранг.

Доказательство теоремы следует из свойств определителя матрицы. В самом деле, при этих преобразованиях определители квадратных матриц либо сохраняются, либо умножаются на число, не равное нулю. В результате наивысший порядок отличных от нуля миноров исходной матрицы остается прежним, т.е. ее ранг не меняются.

С помощью элементарных преобразований матрицу приводят к так называемому ступенчатому виду (преобразуют в ступенчатую матрицу ), т.е. добиваются, чтобы в эквивалентной матрице под главной диагональю стояли только нулевые элементы, а на главной диагонали – ненулевые:

Ранг ступенчатой матрицы равен r, так как вычеркиванием из нее столбцов, начиная с (r + 1)-го и дальше можно получить треугольную матрицу r-го порядка, определитель которой будет отличен от нуля, так как будет представлять собой произведение ненулевых элементов (следовательно, имеется минор r-го порядка, не равный нулю):

Пример. Найти ранг матрицы

1). Если а 11 = 0 (как в нашем случае), то перестановкой строк или столбцов добьемся того, чтобы а 11 ¹ 0. Здесь поменяем местами 1-ю и 2-ю строки матрицы:

2). Теперь а 11 ¹ 0. Элементарными преобразованиями добьемся того, чтобы все остальные элементы в первом столбце равнялись нулю. Во второй строке a 21 = 0. В третьей строке a 31 = -4. Чтобы вместо (-4) стоял 0, прибавим к третьей строке первую строку, умноженную на 2 (т.е. на (-а 31 /а 11) = -(-4)/2 =
= 2). Аналогично к четвертой строке прибавим первую строку (умноженную на единицу, т.е. на (-а 41 /а 11) = -(-2)/2 = 1).

3). В полученной матрице а 22 ¹ 0 (если бы было а 22 = 0, то можно было бы снова переставить строки). Добьемся, чтобы ниже диагонали во втором столбце тоже стояли нули. Для этого к 3-й и 4-й строкам прибавим вторую строку, умноженную на -3 ((-а 32 /а 22) = (-а 42 /а 22) = -(-3)/(-1) = -3):

4). В полученной матрице две последние строки – нулевые, и их можно отбросить:

Получена ступенчатая матрица, состоящая из двух строк. Следовательно, r(A) = 2.

1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого - определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!

Определение матрицы

Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.

Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A , матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n , где m – количество строк, а n – количество столбцов.

Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.

Что можно делать с матрицами? Складывать/вычитать , умножать на число , умножать между собой , транспонировать . Теперь обо всех этих основных операциях над матрицами по порядку.

Операции сложения и вычитания матриц

Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы . Приведем пример. Выполним сложение двух матриц A и В размером два на два.

Вычитание выполняется по аналогии, только с противоположным знаком.

На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:

Операция умножения матриц

Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы - A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго . Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:

И пример с реальными числами. Умножим матрицы:

Операция транспонирования матрицы

Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:

Определитель матрицы

Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!

Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.

Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.

А если матрица три на три? Тут уже посложнее, но справиться можно.

Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.

К счастью, вычислять определители матриц больших размеров на практике приходится редко.

Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот - столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис . Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.